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FIG. 3. A comparison between predicted and correlated local 
Nusselt numbers for vertical, inclined and horizontal plates. 

results was also found to exist for the average Nusselt number 
with an exponent value of n = 3, as in the local Nusselt 
number. 

CONCLUSION 

The local and average Nusselt numbers for laminar mixed 
convection flow adjacent to vertical, inclined and horizontal 
flat plates with uniform surface heat flux are presented for 
the entire mixed convection regime and for a wide range of 
Prandtl numbers. Simple correlation equations for Nusselt 
numbers are presented, which show an excellent agreement 
with the numerically predicted mixed convection values for 
both buoyancy assisting and opposing flows. 
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1. INTRODUCTION 

THE UNSTEADY heat transfer from a heated wire is encount- 
ered in various applications including hot-wire or film 
anemometry and electronic cooling. The time lag between 
the heat transfer and the relative velocity of the fluid to the 
wire is now well recognized. Using the Oseen approximation, 
Davies [l] analyzed the heat transfer from a constant-tem- 
perature circular cylinder in a cross-flow which has a small, 
sinusoidally fluctuating velocity superimposed on the mean 
velocity. The Reynolds number corresponding to the mean 
flow considered by him was smaller than one. Davies found 
that there is always a phase lag between the fluctuating 
velocity and the fluctuating heat transfer unless when the 

Reynolds number approaches zero. Apelt and Ledwich [2] 
studied the same problem for flows of Reynolds numbers in 
the range l-40. They found numerically that the phase lag 
becomes more pronounced as the frequency of cylinder oscil- 
lation increases. Tseng and Lin [3] showed, by use of an 
asymptotic solution, that the phase lag persists in flows of 
Reynolds number of a few hundred. They also found the 
existence of an optimal frequency for the maximum heat 
transfer enhancement in a cross-flow of a given mean flow 
Reynolds number and a given small amplitude of cylinder 
fluctuation. Their asymptotic solution was later applied to 
construct the theory of a heat sensing velocimeter [4]. In the 
present investigation, we are concerned with the unsteady 
heat transfer from a heated cylinder oscillating with a large 
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NOMENCLATURE 

d diameter of cylinder WI dimensional frequency 
D distance between the wall and the cylinder axis 

normalized by d ; 

dimensionless frequency, c~,/(v/d’) 
velocity or temperature basis function 

9s gravitational acceleration component in the a- r% Cartesian stress tensor 
direction pressure basis function 

N half the horizontal computational domain ? dimensionless temperature 
normalized by d 7. thermal diffusivity 

P dimensionless pressure, P/(pU,,,/d) i polar angle measured counter clockwise from 
r radial distance from cylinder axis normalized by +*-axis. 

d 
1 dimensionless time, t,/(d’/v) Dimensionless groups 
V dimensionless cylinder velocity (Gr), component of Grashof number vector, 

um average cylinder velocity pATd’g,/v’ 
L’ 01 dimensionless velocity, V,/lJ, local Nusselt number, -(&3/L%),, ,,r 
X, y dimensionless Cartesian coordinates, X/d, Y/d. 

f$ 
average Nusselt number 

Pr Prandtl number, v/x 
Re Reynolds number, U,,,d/v 

Greek symbols S, Strouhal number, cold/U,,,. 

B thermal expansion coefficient 

p dynamic viscosity Subscripts 
Y kinematic viscosity a .X or y Cartesian component 
AT maximum temperature difference .x, Y I, Y components 

P density i jth node of the finite element. 

amplitude in a cross-flow. In addition to the usual phase lag, 
we found numerically, a hitherto unreported phenomenon 
of nonlinear amplitude modulation of the heat transfer 
response over a period which is one order ofmagnitude larger 
than the period of the velocity fluctuation. The numerical 
method used is a finite element Galerkin method. The 
detailed description of this method is available [5,6] and will 
not be elaborated here. 

2. NUMERICAL METHOD 

Consider the unsteady two-dimensional heat transfer from 
a circular cylinder in a Newtonian fluid. The governing 
dimensionless equations with the Boussinesq approximation 
are 

a,,, = 0 

e,,, + Rev,v,,o + O(Gr)JRe - Q.~ = 0 

O,, + Rer,B,, - B.,/Pr = 0 

(1) 

where ~1, is the velocity component normalized with the 
maximum velocity, G( and b stand for the x or y Cartesian 
coordinates divided by the cylinder diameter d, B is the 
temperature normalized with the maximum temperature 
difference, t is time normalized by d2/v, v being the kinematic 
viscosity. the subscripts following the comma, denote partial 
differentiations. and rrE8 is the stress tensor. The parameters 
in (I) are Re, (Gr),, and Prdefined in the Nomenclature. (Gr), 
in a Cartesian coordinate system moving with the cylinder of 
velocity - iU(t) is based on g. = (dU/dt,g). 

The initial condition is 

0 = r, = 0 at t = 0 

and the boundary conditions with respect to a coordinate 
system attached to the cylinder moving at a velocity -iU(t) 
are 

c,=N=O and v,=U(f) at x=-N 

L’,,, =r;,=B =O .x at x=N 

t’, = L’,,., = 6,r = 0 at y=O 

~1~ = 8 = 0 and ~1, = U(t) at y = D 

13, = t’,. = 0 and 0 = H(t) at r = l/2 

where H(f) is the Heavyside unit step function, r is the radial 
distance measured in the unit of the cylinder diameter, and 
2N and D represent respectively the horizontal and vertical 
sides of the rectangular computation domain. Successively 
larger values of N and D will be chosen to meet the required 
numerical accuracy. The above boundary conditions imply 
that the flow is symmetric with respect to the x-axis. Hence 
the results to be presented are for flows before the asymmetric 
vortex shedding, and for the case of negligible asymmetric 
natural convection. 

The solution of (1) is expanded in terms of the basis 
functions fI, and I/Y, [S, 61 

Ct’z3 @ = f [Van, ej(t)14j(x,Y) 
I= I 

P = ,$, p,(~)lc;(wJ) 

(2) 

where p is pressure normalized with pU,,,/d, p being the 
dynamic viscosity, and n and m are respectively the total 
number of velocity or temperature and pressure nodes in the 
finite element method. The Galerkin method is applied to 
reduce equations (1) with (2) to a system of ordinary differ- 
ential equations in the amplitude functions v,(f), 0,(t) and 
P,(t). The system is then solved with a predictor-corrector 
method [5,6]. 

3. RESULTS AND DISCUSSIONS 

First the method is applied to the case of impulsively 
started uniform motion of a cylinder, i.e. U(t) = If(t). The 
local Nusselt number, Nu, is computed at each time step 
from the temperature gradient at the cylinder surface, 

where [ is the polar angle measured from the x-axis, and r 
is the radial distance measured from the cylinder axis. The 
results of the local Nusselt number of c = x/4 are given in 
Fig. 1 together with other known results. Comparisons are 
very good except with that of Jain and Goel[7] at large times. 
The steady-state local Nusselt number variation along the 
cylinder surface is also obtained for Re = 200 and Pr = 0.7. 
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FIG. 1. The local Nusselt number at Re = 200, Pr = 0.7, FIG. 2. The local Nusselt number at Pr = 0.7, [ = 0: ~ 
[ = n/4 : --~ present study ; 0 Sano [8] ; * Tseng and Lin present study (Re = 20) ; ~-- Dennis et al. (Re = 20) [IO] ; 

[3] ; a Jain and Gael [7]. 0 Eckert and Soehngen [9]. 

The results are given in Fig. 2 together with the experimental The numerical results to be presented are all for the value of 
results of Eckert and Soehngen [9] and the numerical results 6 = 0.5. The average Nusselt number, that is the local Nusselt 
of Dennis i?l al. [lo]. Although the numerical results obtained number integrated over the entire cylinder surface, has been 
with two different methods agree well in Fig. 2, both do not computed as a function of time for a given Re = 20 and 
reproduce Eckert’s local minimum of Nu. The discrepancy two different values of frequencies. The Reynolds number is 
is probably due to the difference in the boundary conditions based on the average velocity. The results are given in Fig. 
encountered in the experiments and those encountered in 3 together with the commonly used quasi-steady correlation 
numerical computations. Other than this discrepancy, the illI 
agreements are good. 

Having applied the method successively to the case which 
has known experimental and numerical results, we now 
applied the method to produce some new results. Consider 
a circular cylinder of constant surface temperature in a cross 
flow of constant velocity V,. Initially the temperature and 
velocity field about the cylinder are steady. Then, at a certain 
time the cylinder is made to oscillate. Thus, the free-stream 
velocity, nondimensionalized with V,, relative to the cylin- 
der, is 

L/(t)= lf6sinwt 

where for 4 < Re c. 40, C = 0.821 and n = 0.385. Note the 
phase lag between the quasi-steady heat transfer and the 
genuine unsteady heat transfer of 0.3~ in Fig. 3. The phase 
lag of local Nusselt number is even more dramatic. The phase 
lag at the rear ‘stagnation point’ was found to be larger than 
that at [ = n/4 by a value of 0.4~ The phase lag has also 
been observed for much smaller frequencies. Dennis et al. 
[lo], using Oseen type approximation, estimated that the 
minimum value of the Strouhal number of the impressed 
fluctuations at which the time lag becomes important is of 
order 0.1 Re. Pr, where the Strouhal number is related to w where w is frequency of oscillation nondimensionalized with 

v/d’, and 6 is the amplitude of oscillation normalized with d. by 

Nu, = C[U(t)d/v] 

3.00 

2.75 

2.50 

Nu 

2.25 

I .75 1 
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t 
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FIG. 3. Responses of average Nusselt number to periodic fluctuation in velocity about a mean flow at 
Re = 20, Pr = 0.7, o = 8071: - computed responses ; --- quasi-steady response. 
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FIG. 4. Amplitude modulation of local heat transfer coefficient at [ = 0, Re = 20, Pr = 0.7, w = 160x. 

w = S,Re. 

Dennis et al. also found that the phase lag approaches x/2 
as S, + co. The results obtained by Apelt and Ledwich [2] 
for ihe frequency corresponding to a Strouhal number of 
0.87 showed a ahase laa of 0.228s at Re = 20. Comparing 
these known results wirh the present results, we conclude 
that the time lag appears to increase with the frequency for 
all finite Re. 

Figure 4 shows the time variation of the local Nusselt 
number at the rear stagnation point. Note that even after 23 
cycles, the periodic stationary response has not yet been 
reached. Moreover, the response curve seems to modulate 
over a period which is one order of magnitude larger than the 
period of the cylinder fluctuation. This nonlinear modulation 
cannot be predicted from the quasi-steady correlation. 

When our results for Re = 20 are applied to air flow in 
the I-10m s- 1 range, the relevant cylinder diameter is smaller 
than 1 mm. The dimensional frequencies corresponding to 
o = 8071 and 160~ used in our demonstration require high 
dimensional frequencies of order 10kHz. No experiments 
in this range of parameters are known to the writers. 

All computations was done on the IBM 4341 and VPS 32 
with double precision. When the horizontal extent of the 
computational domain was doubled by increasing N from 
10 to 20 with D = 5, a change ofless than 5% in the numerical 
results was found. The change becomes less than 1% when 
N was further increased to 40. When D was increased from 
5 to 1O with N = 20, a change of less than 1% was found. 
N = 20 and D = 5 were used for the results reported in this 
work. For the sufficient spatial resolution, we halved the 
finite-element size near the cylinder successively until the two 
successive results differ from each other by less than 1%. The 
time steps were chosen adaptively with the requirement that 
the truncation error is below a given value of 10m4 at each 
time step [5]. 

4. CONCLUSION 

A computer code based on the Galerkin finite element 
method has been developed for solving the problem of two- 
dimensional unsteady heat transfer. The code can be applied 
to any geometry, although the code is applied here to the 
case of a circular cylinder between two parallel plates. This 
code will be made available to interested readers. The time 
lag in NM and NM and their nonlinear modulation dem- 

onstrated in this work should be taken into account in any 
application involving unsteady heat transfer. 
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